Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plant Mol Biol ; 113(4-5): 193-204, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878187

ABSTRACT

Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium. The experimental results showed that CeF3'H2, CeDFR, CeANS, CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium. The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis. These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium.


Subject(s)
Flavanones , Orchidaceae , Anthocyanins , Transcriptome , Flavonoids/metabolism , Flowers/genetics , Flowers/metabolism , Flavonols , Orchidaceae/genetics , Orchidaceae/metabolism , Flavanones/metabolism , Color , Gene Expression Regulation, Plant
2.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762519

ABSTRACT

WUSCHEL-related homeobox (WOX) is a plant-specific transcription factor (TF), which plays an essential role in the regulation of plant growth, development, and abiotic stress responses. However, little information is available on the specific roles of WOX TFs in sacred lotus (Nelumbo nucifera), which is a perennial aquatic plant with important edible, ornamental, and medicinal values. We identified 15 WOX TFs distributing on six chromosomes in the genome of N. nucifera. A total of 72 WOX genes from five species were divided into three clades and nine subclades based on the phylogenetic tree. NnWOXs in the same subclades had similar gene structures and conserved motifs. Cis-acting element analysis of the promoter regions of NnWOXs found many elements enriched in hormone induction, stress responses, and light responses, indicating their roles in growth and development. The Ka/Ks analysis showed that the WOX gene family had been intensely purified and selected in N. nucifera. The expression pattern analysis suggested that NnWOXs were involved in organ development and differentiation of N. nucifera. Furthermore, the protein-protein interaction analysis showed that NnWOXs might participate in the growth, development, and metabolic regulation of N. nucifera. Taken together, these findings laid a foundation for further analysis of NnWOX functions.


Subject(s)
Genes, Homeobox , Nelumbo , Nelumbo/genetics , Phylogeny , Transcription Factors/genetics , Plant Development
3.
Nat Commun ; 14(1): 3661, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339946

ABSTRACT

Monocots are a major taxon within flowering plants, have unique morphological traits, and show an extraordinary diversity in lifestyle. To improve our understanding of monocot origin and evolution, we generate chromosome-level reference genomes of the diploid Acorus gramineus and the tetraploid Ac. calamus, the only two accepted species from the family Acoraceae, which form a sister lineage to all other monocots. Comparing the genomes of Ac. gramineus and Ac. calamus, we suggest that Ac. gramineus is not a potential diploid progenitor of Ac. calamus, and Ac. calamus is an allotetraploid with two subgenomes A, and B, presenting asymmetric evolution and B subgenome dominance. Both the diploid genome of Ac. gramineus and the subgenomes A and B of Ac. calamus show clear evidence of whole-genome duplication (WGD), but Acoraceae does not seem to share an older WGD that is shared by most other monocots. We reconstruct an ancestral monocot karyotype and gene toolkit, and discuss scenarios that explain the complex history of the Acorus genome. Our analyses show that the ancestors of monocots exhibit mosaic genomic features, likely important for that appeared in early monocot evolution, providing fundamental insights into the origin, evolution, and diversification of monocots.


Subject(s)
Acorus , Tetraploidy , Phylogeny , Diploidy , Genome
4.
Mol Phylogenet Evol ; 184: 107797, 2023 07.
Article in English | MEDLINE | ID: mdl-37086913

ABSTRACT

Pleione is an orchid endemically distributed in high mountain areas across the Hengduan Mountains (HDM), Himalayas, Southeast Asia and South of China. The unique flower shapes, rich colors and immense medicinal importance of Pleione are valuable ornamental and economic resources. However, the phylogenetic relationships and evolutionary history of the genus have not yet been comprehensively resolved. Here, the evolutionary history of Pleione was investigated using single-copy gene single nucleotide polymorphisms and chloroplast genome datasets. The data revealed that Pleione could be divided into five clades. Discordance in topology between the two phylogenetic trees and network and D-statistic analyses indicated the occurrence of reticulate evolution in the genus. The evolution could be attributed to introgression and incomplete lineage sorting. Ancestral area reconstruction suggested that Pleione was originated from the HDM. Uplifting of the HDM drove rapid diversification by creating conditions favoring rapid speciation. This coincided with two periods of consolidation of the Asian monsoon climate, which caused the first rapid diversification of Pleione from 8.87 to 7.83 Mya, and a second rapid diversification started at around 4.05 Mya to Pleistocene. The interaction between Pleione and climate changes, especially the monsoons, led to the current distribution pattern and shaped the dormancy characteristic of the different clades. In addition to revealing the evolutionary relationship of Pleione with orogeny and climate changes, the findings of this study provide insights into the speciation and diversification mechanisms of plants in the East Asian flora.


Subject(s)
Genome, Chloroplast , Plants , Phylogeny , China , Flowers
5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835586

ABSTRACT

The YABBY gene family plays an important role in plant growth and development, such as response to abiotic stress and lateral organ development. YABBY TFs are well studied in numerous plant species, but no study has performed a genome-wide investigation of the YABBY gene family in Melastoma dodecandrum. Therefore, a genome-wide comparative analysis of the YABBY gene family was performed to study their sequence structures, cis-acting elements, phylogenetics, expression, chromosome locations, collinearity analysis, protein interaction, and subcellular localization analysis. A total of nine YABBY genes were found, and they were further divided into four subgroups based on the phylogenetic tree. The genes in the same clade of phylogenetic tree had the same structure. The cis-element analysis showed that MdYABBY genes were involved in various biological processes, such as cell cycle regulation, meristem expression, responses to low temperature, and hormone signaling. MdYABBYs were unevenly distributed on chromosomes. The transcriptomic data and real-time reverse transcription quantitative PCR (RT-qPCR) expression pattern analyses showed that MdYABBY genes were involved in organ development and differentiation of M. dodecandrum, and some MdYABBYs in the subfamily may have function differentiation. The RT-qPCR analysis showed high expression of flower bud and medium flower. Moreover, all MdYABBYs were localized in the nucleus. Therefore, this study provides a theoretical basis for the functional analysis of YABBY genes in M. dodecandrum.


Subject(s)
Flowers , Plant Proteins , Phylogeny , Plant Proteins/genetics , Flowers/genetics , Multigene Family , Meristem/metabolism , Gene Expression Regulation, Plant , Evolution, Molecular , Stress, Physiological , Gene Expression Profiling
6.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835234

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factors are widely distributed across eukaryotic kingdoms and participate in various physiological processes. To date, the bHLH family has been identified and functionally analyzed in many plants. However, systematic identification of bHLH transcription factors has yet to be reported in orchids. Here, 94 bHLH transcription factors were identified from the Cymbidium ensifolium genome and divided into 18 subfamilies. Most CebHLHs contain numerous cis-acting elements associated with abiotic stress responses and phytohormone responses. A total of 19 pairs of duplicated genes were found in the CebHLHs, of which 13 pairs were segmentally duplicated genes and six pairs were tandemly duplicated genes. Expression pattern analysis based on transcriptome data revealed that 84 CebHLHs were differentially expressed in four different color sepals, especially CebHLH13 and CebHLH75 of the S7 subfamily. The expression profiles of CebHLH13 and CebHLH75 in sepals, which are considered potential genes regulating anthocyanin biosynthesis, were confirmed through the qRT-PCR technique. Furthermore, subcellular localization results showed that CebHLH13 and CebHLH75 were located in the nucleus. This research lays a foundation for further exploration of the mechanism of CebHLHs in flower color formation.


Subject(s)
Anthocyanins , Basic Helix-Loop-Helix Transcription Factors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Genome, Plant , Multigene Family , Phylogeny , Gene Expression Regulation, Plant , Plant Proteins/genetics
7.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674776

ABSTRACT

Growth-regulating factor (GRF) is a kind of transcription factor unique to plants, playing an important role in the flowering regulation, growth, and development of plants. Melastoma dodecandrum is an important member of Melastomataceae, with ornamental, medicinal, and edible benefits. The identification of the GRF gene family in M. dodecandrum can help to improve their character of flavor and continuous flowering. The members of the GRF gene family were identified from the M. dodecandrum genome, and their bioinformatics, selective pressure, and expression patterns were analyzed. The results showed that there were 20 GRF genes in M. dodecandrum. Phylogenetic analysis showed that the 71 GRF genes from M. dodecandrum, Arabidopsis thaliana, Camellia sinensis, and Oryza sativa can be divided into three clades and six subclades. The 20 GRF genes of M. dodecandrum were distributed in twelve chromosomes and one contig. Furthermore, the gene structure and motif analysis showed that the intron and motif within each clade were very similar, but there were great differences among different clades. The promoter contained cis-acting elements related to hormone induction, stress, and growth and development. Different transcriptomic expression of MdGRFs indicated that MdGRFs may be involved in regulating the growth and development of M. dodecandrum. The results laid a foundation for further study on the function and molecular mechanism of the M. dodecandrum GRF gene family.


Subject(s)
Melastomataceae , Melastomataceae/chemistry , Phylogeny , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism
8.
BMC Plant Biol ; 22(1): 557, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36456919

ABSTRACT

Containing the largest number of species, the orchid family provides not only materials for studying plant evolution and environmental adaptation, but economically and culturally important ornamental plants for human society. Previously, we collected genome and transcriptome information of Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica which belong to two different subfamilies of Orchidaceae, and developed user-friendly tools to explore the orchid genetic sequences in the OrchidBase 4.0. The OrchidBase 4.0 offers the opportunity for plant science community to compare orchid genomes and transcriptomes and retrieve orchid sequences for further study.In the year 2022, two whole-genome sequences of Orchidoideae species, Platanthera zijinensis and Platanthera guangdongensis, were de novo sequenced, assembled and analyzed. In addition, systemic transcriptomes from these two species were also established. Therefore, we included these datasets to develop the new version of OrchidBase 5.0. In addition, three new functions including synteny, gene order, and miRNA information were also developed for orchid genome comparisons and miRNA characterization.OrchidBase 5.0 extended the genetic information to three orchid subfamilies (including five orchid species) and provided new tools for orchid researchers to analyze orchid genomes and transcriptomes. The online resources can be accessed at https://cosbi.ee.ncku.edu.tw/orchidbase5/.


Subject(s)
MicroRNAs , Orchidaceae , Gene Order , Knowledge Bases , MicroRNAs/genetics , Orchidaceae/genetics , Synteny
9.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743113

ABSTRACT

Sacred lotus (Nelumbo nucifera) is an aquatic perennial plant with essential food, ornamental, and pharmacological value. Growth-regulating factor (GRF) is a transcription factor (TF) family that plays an important role in regulating the growth and development of plants. In this study, a comprehensive analysis of the GRF family in N. nucifera was performed, and its role in N. nucifera development was studied. A total of eight GRF genes were identified in the N. nucifera genome. Phylogenetic analysis divided the 38 GRF genes into six clades, while the NuGRFs only contained five clades. The analyses of gene structures, motifs, and cis-acting regulatory elements of the GRF gene family were performed. In addition, the chromosome location and collinearity were analyzed. The expression pattern based on transcriptomic data and real-time reverse transcription-quantitative PCR (qRT-PCR) revealed that the GRF genes were expressed in multiple organs and were abundant in actively growing tissues, and the expression levels decreased as the age of N. nucifera increased. Then, 3D structures of the NuGRF proteins were predicted by homology modeling. Finally, the subcellular localization of GRF1 was ascertained in the tobacco leaf through a vector. Therefore, this study provides a comprehensive overview of the GRF TF family in N. nucifera.


Subject(s)
Nelumbo , Nelumbo/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
10.
Nat Plants ; 8(4): 373-388, 2022 04.
Article in English | MEDLINE | ID: mdl-35449401

ABSTRACT

To improve our understanding of the origin and evolution of mycoheterotrophic plants, we here present the chromosome-scale genome assemblies of two sibling orchid species: partially mycoheterotrophic Platanthera zijinensis and holomycoheterotrophic Platanthera guangdongensis. Comparative analysis shows that mycoheterotrophy is associated with increased substitution rates and gene loss, and the deletion of most photoreceptor genes and auxin transporter genes might be linked to the unique phenotypes of fully mycoheterotrophic orchids. Conversely, trehalase genes that catalyse the conversion of trehalose into glucose have expanded in most sequenced orchids, in line with the fact that the germination of orchid non-endosperm seeds needs carbohydrates from fungi during the protocorm stage. We further show that the mature plant of P. guangdongensis, different from photosynthetic orchids, keeps expressing trehalase genes to hijack trehalose from fungi. Therefore, we propose that mycoheterotrophy in mature orchids is a continuation of the protocorm stage by sustaining the expression of trehalase genes. Our results shed light on the molecular mechanism underlying initial, partial and full mycoheterotrophy.


Subject(s)
Mycorrhizae , Orchidaceae , Mycorrhizae/genetics , Orchidaceae/genetics , Orchidaceae/metabolism , Orchidaceae/microbiology , Symbiosis , Trehalase/metabolism , Trehalose/metabolism
11.
Mitochondrial DNA B Resour ; 7(1): 257-258, 2022.
Article in English | MEDLINE | ID: mdl-35087948

ABSTRACT

Phalaenopsis stobartiana Reichenbach f. 1877 is mainly distributed in Yunnan province of China and has a high ornamental and breeding value. Here, we reported the chloroplast genome of P. stobartiana. The length of the chloroplast genome was 145,900 bp, encoding 120 genes. The average GC content was 36.8%. Phylogenetic analysis revealed that P. stobartiana and P. wilsonii are closely related. The chloroplast genome could be used for further phylogenetic research, and provide molecular data for future genetic protection and breeding programs.

12.
J Genet Genomics ; 49(2): 120-131, 2022 02.
Article in English | MEDLINE | ID: mdl-34757038

ABSTRACT

Melastomataceae has abundant morphological diversity with high economic and ornamental merit in Myrtales. The phylogenetic position of Myrtales is still contested. Here, we report the chromosome-level genome assembly of Melastoma dodecandrum in Melastomataceae. The assembled genome size is 299.81 Mb with a contig N50 value of 3.00 Mb. Genome evolution analysis indicated that M. dodecandrum, Eucalyptus grandis, and Punica granatum were clustered into a clade of Myrtales and formed a sister group with the ancestor of fabids and malvids. We found that M. dodecandrum experienced four whole-genome polyploidization events: the ancient event was shared with most eudicots, one event was shared with Myrtales, and the other two events were unique to M. dodecandrum. Moreover, we identified MADS-box genes and found that the AP1-like genes expanded, and AP3-like genes might have undergone subfunctionalization. The SUAR63-like genes and AG-like genes showed different expression patterns in stamens, which may be associated with heteranthery. In addition, we found that LAZY1-like genes were involved in the negative regulation of stem branching development, which may be related to its creeping features. Our study sheds new light on the evolution of Melastomataceae and Myrtales, which provides a comprehensive genetic resource for future research.


Subject(s)
Melastomataceae , Myrtales , Evolution, Molecular , Genome, Plant/genetics , Phylogeny
14.
Hortic Res ; 8(1): 255, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34848682

ABSTRACT

The marvelously diverse Orchidaceae constitutes the largest family of angiosperms. The genus Cymbidium in Orchidaceae is well known for its unique vegetation, floral morphology, and flower scent traits. Here, a chromosome-scale assembly of the genome of Cymbidium ensifolium (Jianlan) is presented. Comparative genomic analysis showed that C. ensifolium has experienced two whole-genome duplication (WGD) events, the most recent of which was shared by all orchids, while the older event was the τ event shared by most monocots. The results of MADS-box genes analysis provided support for establishing a unique gene model of orchid flower development regulation, and flower shape mutations in C. ensifolium were shown to be associated with the abnormal expression of MADS-box genes. The most abundant floral scent components identified included methyl jasmonate, acacia alcohol and linalool, and the genes involved in the floral scent component network of C. ensifolium were determined. Furthermore, the decreased expression of photosynthesis-antennae and photosynthesis metabolic pathway genes in leaves was shown to result in colorful striped leaves, while the increased expression of MADS-box genes in leaves led to perianth-like leaves. Our results provide fundamental insights into orchid evolution and diversification.

15.
Front Pharmacol ; 12: 700587, 2021.
Article in English | MEDLINE | ID: mdl-34366852

ABSTRACT

With an increase in aging populations worldwide, age-related diseases such as Alzheimer's disease (AD) have become a global concern. At present, a cure for neurodegenerative disease is lacking. There is an urgent need for a biomarker that can facilitate the diagnosis, classification, prognosis, and treatment response of AD. The recent emergence of highly sensitive mass-spectrometry platforms and high-throughput technology can be employed to discover and catalog vast datasets of small metabolites, which respond to changed status in the body. Metabolomics analysis provides hope for a better understanding of AD as well as the subsequent identification and analysis of metabolites. Here, we review the state-of-the-art emerging candidate biomarkers for AD.

16.
Plant Divers ; 43(6): 452-461, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024514

ABSTRACT

Cymbidium, which includes approximately 80 species, is one of the most ornamental and cultivated orchid genera. However, a lack of markers and sparse sampling have posed great challenges to resolving the phylogenetic relationships within the genus. In the present study, we reconstructed the phylogenetic relationships by utilizing one nuclear DNA (nrITS) and seven plastid genes (rbcL, trnS, trnG, matK, trnL, psbA, and atpI) from 70 species (varieties) in Cymbidium. We also examined the occurrence of phylogenetic conflict between nuclear (nrITS) and plastid loci and investigated how phylogenetic conflict bears on taxonomic classification within the genus. We found that phylogenetic conflict and low support values may be explained by hybridization and a lack of informative characteristics. Our results do not support previous classification of the subgenera and sections within Cymbidium. Discordance between gene trees and network analysis indicate that reticulate evolution occurred in the genus Cymbidium. Overall, our study indicates that Cymbidium has undergone a complex evolution.

17.
Mitochondrial DNA B Resour ; 4(2): 3022-3024, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-33365838

ABSTRACT

Plants in Michelia, presented by Magnolia figo DC, are wonderful resources in Magnoliaceae, covering a series of aromatic plants. Despite extensive studies in this family, the M. figo complete chloroplast genome and the taxonomical status based on the whole chloroplast sequences remain unclear. Herein, we report the complete chloroplast genome of M. figo. The chloroplast genome was 160,113 bp in length, with a large single-copy (LSC) region of 88,113 bp and a small single-copy (SSC) region of 18,797 bp, separated by two inverted repeat (protein-coding) regions of 26,602 bp. A total of 135 CDSs were found, including 129 genes, 85 protein-coding mRNAs, 36 tRNA genes, and eight rRNA genes. The overall GC content was 39.3%, and GC percentages range from 34.3% to 43.2% throughout LSC, IRs, and SSC regions. Phylogenetic analysis showed that M. figo is most closely to Michelia odora and displayed a relationship that three Michelia were nested inside Magnolia. This announcement of the complete M. figo cp genome sequence could provide valuable information for further breeding, cp genetic modification, and phylogenetic study in Magnoliaceae.

18.
Mitochondrial DNA B Resour ; 4(2): 3854-3855, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-33366219

ABSTRACT

Blastus pauciflorus, a shrub endemic to Hong Kong and Guangdong, south China, growing on low-altitude hillsides, under the forest. The species is controversial in classification. Herein, we report the complete chloroplast genome sequence assembled from Illumina pair-end sequencing data, with aims to resolve its relationship with the related species. The complete chloroplast genome was 155,983 bp in length, includes two inverted repeat regions (IRs) of 26,716 bp each, which were separated by a large single copy region (LSC) 86,101 bp and a small single copy region (SSC) 16,450 bp. The chloroplast genome contained 129 genes, including 82 protein-coding genes, 2 pseudogenes, 37 tRNA genes and 8 rRNA genes. The overall GC content in the chloroplast genome of B. pauciflorus was 37.0%. Phylogenetic analysis showed that B. pauciflorus is closed to B. cochinchinensis.

19.
Mitochondrial DNA B Resour ; 4(2): 3910-3911, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-33366247

ABSTRACT

Paphiopedilum purpuratum, an endangered terrestrial orchid distributed in southwestern and south of China. In this study, the complete chloroplast genome (cpDNA) sequence of P. purpuratum was determined from Illumina pair-end sequencing data. With a total length of 158,459 bp in length and includes two inverted repeat regions (IRs) of 34,484 bp each, which were separated by a large single-copy region (LSC) 88,022 bp and a small single-copy region (SSC) 1,469 bp. The chloroplast genome contained 126 genes, including 74 protein conding genes,38 tRNA genes, and 8 rRNA genes. Phylogenetic analysis indicated that P. purpuratum, P. dianthum, P. niveum, P. delenatii, and P. armeniacum cluster together, placed them within genus Paphiopedilum. The complete chloroplast genome sequence of P. purpuratum will provide a useful resource for the evolutionary biology study of phylogenetic studies in Orchidaceae.

20.
Mitochondrial DNA B Resour ; 5(1): 115-116, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-33366446

ABSTRACT

Paphiopedilum micranthum is a rare species of terrestrial herb in the Orchidaceae. It is naturally distributed in southwestern China and north of Vietnam. Here, we reported the first complete chloroplast genome (cpDNA) of P. micranthum. The length is 163,243 bp, with 129 genes, including 77 protein coding genes, 38 tRNA genes, and 8 rRNA genes. It includes two inverted repeat regions (IRs) of 36,128 bp each, which were separated by a large single copy region (LSC) of 89,245 bp and a small single copy region (SSC) of 1742 bp. The overall GC-content of the whole chloroplast is 35.8%, while the corresponding values of the LSC, SSC, and IR regions are 33.2, 20, and 39.3, respectively. The complete chloroplast genome sequence of P. micranthum (GenBank accession number: MN535014) can be used as a useful resource for the evolutionary biology study of phylogenetic studies in Orchidaceae.

SELECTION OF CITATIONS
SEARCH DETAIL
...